1,228 research outputs found

    GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User

    Get PDF
    Gaze interaction holds a lot of promise for seamless human-computer interaction. At the same time, current wearable mobile eye trackers require user augmentation that negatively impacts natural user behavior while remote trackers require users to position themselves within a confined tracking range. We present GazeDrone, the first system that combines a camera-equipped aerial drone with a computational method to detect sidelong glances for spontaneous (calibration-free) gaze-based interaction with surrounding pervasive systems (e.g., public displays). GazeDrone does not require augmenting each user with on-body sensors and allows interaction from arbitrary positions, even while moving. We demonstrate that drone-supported gaze interaction is feasible and accurate for certain movement types. It is well-perceived by users, in particular while interacting from a fixed position as well as while moving orthogonally or diagonally to a display. We present design implications and discuss opportunities and challenges for drone-supported gaze interaction in public

    Non-monotonic current-to-rate response function in a novel integrate-and-fire model neuron

    Get PDF
    A novel integrate-and-fire model neuron is proposed to account for a non-monotonic f-I response function, as experimentally observed. As opposed to classical forms of adaptation, the present integrate- and-fire model the spike-emission process incorporates a state - dependent inactivation that makes the probability of emitting a spike decreasing as a function of the mean depolarization level instead of the mean firing rate. \ua9 Springer-Verlag Berlin Heidelberg 2002

    A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey

    Full text link
    We provide exact solutions to the cosmological matter perturbation equation in a homogeneous FLRW universe with a vacuum energy that can be parametrized by a constant equation of state parameter ww and a very accurate approximation for the Ansatz w(a)=w0+wa(1a)w(a)=w_0+w_a(1-a). We compute the growth index \gamma=\log f(a)/\log\Om_m(a), and its redshift dependence, using the exact and approximate solutions in terms of Legendre polynomials and show that it can be parametrized as γ(a)=γ0+γa(1a)\gamma(a)=\gamma_0+\gamma_a(1-a) in most cases. We then compare four different types of dark energy (DE) models: wΛw\LambdaCDM, DGP, f(R)f(R) and a LTB-large-void model, which have very different behaviors at z\gsim1. This allows us to study the possibility to differentiate between different DE alternatives using wide and deep surveys like Euclid, which will measure both photometric and spectroscopic redshifts for several hundreds of millions of galaxies up to redshift z2z\simeq 2. We do a Fisher matrix analysis for the prospects of differentiating among the different DE models in terms of the growth index, taken as a given function of redshift or with a principal component analysis, with a value for each redshift bin for a Euclid-like survey. We use as observables the complete and marginalized power spectrum of galaxies P(k)P(k) and the Weak Lensing (WL) power spectrum. We find that, using P(k)P(k), one can reach (2%, 5%) errors in (w0,wa)(w_0, w_a), and (4%, 12%) errors in (γ0,γa)(\gamma_0, \gamma_a), while using WL we get errors at least twice as large. These estimates allow us to differentiate easily between DGP, f(R)f(R) models and Λ\LambdaCDM, while it would be more difficult to distinguish the latter from a variable equation of state parameter or LTB models using only the growth index.}Comment: 29 pages, 7 figures, 6 table

    Structural evolution in the neutron-rich nuclei 106Zr and 108Zr

    Get PDF
    The low-lying states in 106Zr and 108Zr have been investigated by means of {\beta}-{\gamma} and isomer spectroscopy at the RI beam factory, respectively. A new isomer with a half-life of 620\pm150 ns has been identified in 108Zr. For the sequence of even-even Zr isotopes, the excitation energies of the first 2+ states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The deformed ground state of 108Zr indicates that a spherical sub-shell gap predicted at N = 70 is not large enough to change the ground state of 108Zr to the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is also discussed.Comment: 10 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Possible Conservation of the K -Quantum Number in Excited Rotating Nuclei

    Get PDF
    The \ensuremath{\gamma} cascades feeding into low-K and high-K bands in 163{}^{163}Er are investigated analyzing variances and covariance of the spectrum fluctuations. From a large data set of 109{0}^{9} triple coincidences, \ensuremath{\gamma}-\ensuremath{\gamma} coincidence spectra gated by resolved low-lying rotational bands are analyzed. Low-K bands are found to be fed by a much larger effective number of cascades than high-K bands. The covariance between pairs of gated spectra shows that the cascades feeding low-K bands are different from those feeding the high-K bands. The persistence of the K-selection rules for the excited rotational bands within the angular momentum region 30\ensuremath{\Elzxh}\ensuremath{\le}I\ensuremath{\le}40\ensuremath{\Elzxh} is suggested as explanation

    Possible black universes in a brane world

    Full text link
    A black universe is a nonsingular black hole where, beyond the horizon, there is an expanding, asymptotically isotropic universe. Such spherically symmetric configurations have been recently found as solutions to the Einstein equations with phantom scalar fields (with negative kinetic energy) as sources of gravity. They have a Schwarzschild-like causal structure but a de Sitter infinity instead of a singularity. It is attempted to obtain similar configurations without phantoms, in the framework of an RS2 type brane world scenario, considering the modified Einstein equations that describe gravity on the brane. By building an explicit example, it is shown that black-universe solutions can be obtained there in the presence of a scalar field with positive kinetic energy and a nonzero potential.Comment: 8 pages, 5 figures, gc styl

    Possible observation sequences of Brans-Dicke wormholes

    Full text link
    The purpose of this study is to investigate observational features of Brans-Dicke wormholes in a case if they exist in our Universe. The energy flux from accretion onto a Brans-Dicke wormhole and the so-called "maximum impact parameter" are studied (the last one might allow to observe light sources through a wormhole throat). The computed values were compared with the corresponding ones for GR-wormholes and Schwarzschild black holes. We shown that Brans-Dicke wormholes are quasi-Schwarzschild objects and should differ from GR wormholes by about one order of magnitude in the accretion energy flux.Comment: 5 pages, 6 figure

    A one-dimensional lattice model for a quantum mechanical free particle

    Get PDF
    Two types of particles, A and B with their corresponding antiparticles, are defined in a one dimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts as a source for the polarization field of the other type of particle with nonlocal action but with an effect decreasing with the distance: A -->...\bar{B} B \bar{B} B \bar{B} ... ; B --> A \bar{A} A \bar{A} A ... . It is shown that the combined distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.Comment: 8 pages. Revte
    corecore